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Abstract

A new experiment allows the identification of residues that feature slow conformational exchange in macromolec-
ules. Rotations about dihedral angles that are slower than the global correlation time τc cause a modulation of the
isotropic chemical shifts of the nuclei. If these fluctuations are correlated they induce a differential line broadening
between three-spin single-quantum and triple-quantum coherences involving three nuclei such as the carbonyl C′,
the neighbouring amide nitrogen N and the amide proton HN belonging to a pair of consecutive amino acids.
A cross-correlated relaxation rate R

CS/CS
C′N can be determined that corresponds to the sum of the isotropic and

anisotropic contributions to the chemical shift modulations of the carbonyl carbon and nitrogen nuclei. Only the
isotropic contributions depend on the pulse repetition rate of a multiple-refocusing sequence. An attenuation of
the relaxation rate with increasing pulse repetition rate can therefore be attributed to slow motions. The asparagine
N25 residue of ubiquitin, located in the first α-helix, is shown to feature significant slow conformational exchange.

Abbreviations: CPMG – Carr-Purcell-Meiboom-Gill; ZQC – Zero-quantum coherence; SQC – Single-quantum co-
herence; DQC – Double-quantum coherence; TQC – Triple-quantum coherence; CSA – Chemical shift anisotropy;
CSM – Chemical shift modulation; CS – Chemical shift.

Introduction

Detailed knowledge of the internal dynamics of bio-
molecules such as proteins and nucleic acids can
contribute to a better understanding of their biolo-
gical functions. Conformational exchange and local
motions span a wide range of time scales from pi-
coseconds to milliseconds. NMR relaxation meas-
urements provide useful tools for the extraction of
dynamic information over such a wide range of time
scales. A large number of experiments have been re-
ported which allow one to assess fast (ps-ns) motions,
using the well-known model-free analysis (Lipari and
Szabo, 1982) based on a combination of nitrogen-

15 longitudinal, transverse and cross-relaxation rates.
Local order parameters S2

i can be extracted that
provide a measure of local mobility of the ith amino
acid or of a fragment thereof. Cross-correlation rates
can provide a more refined picture (Pellecchia et al.,
1999; Carlomagno et al., 2000; Kumar et al., 2000;
Frueh, 2002). In some cases, detailed hypotheses can
be made about the precise nature of the motions and
sophisticated models can provide a more complete
description of dynamic processes (Lienin et al., 1998).

There is growing interest in slow phenomena such
as fluctuations of hydrogen bonds and rearrangements
of loops, since such motions are thought to be re-
sponsible for the specificity of subtle phenomena like



264

protein complexation with ligands, protein folding,
protein/protein and protein/nucleic acid recognition.
Slow motions (µs to ms), i.e., motions that are slower
than the global tumbling correlation time τc, are usu-
ally identified by transverse relaxation dispersion ex-
periments, i.e., by measuring the dependence of T2
on the rate νCPMG = 1/(2τCPMG) of a multiple re-
focusing Carr–Purcell–Meiboom–Gill echo sequence,
where τCPMG is the interval between the centers of two
consecutive π pulses, and 2τCPMG is the cycle period
in the sense of average Hamiltonian theory. Alternat-
ively, one can measure the dependence of T1ρ on the
effective RF field amplitude in a spin-locking experi-
ment. A decrease of the relaxation rate with increasing
pulse repetition rate or RF field amplitude indicates
a contribution of slow processes. Recently a number
of relaxation dispersion experiments on 15N and 13C
single quantum coherences (SQC) have been repor-
ted (Mulder et al., 2001; Mills and Szyperski, 2002).
However, the complexity of the dynamics hinders a
satisfactory characterization of the motions, and fur-
ther experimental data are required to obtain a more
complete picture.

Local motions such as rotations about dihedral
angles affect both anisotropic and isotropic compo-
nents of the chemical shifts. Ab initio calculations have
shown that the isotropic component of the chemical
shift tensor of a nucleus σiso = 1

3 (σxx + σyy + σzz)

is sensitive to subtle changes of conformations in the
vicinity of the nucleus (Arnold and Oldfield, 2000;
Brender et al., 2001). Motions that are slower than
the correlation time τc of the molecule can lead to
a modulation of the isotropic shifts of neighbouring
nuclei, and thus contribute to the relaxation of co-
herences. By contrast, the anisotropic components
(CSAs) are averaged out by overall tumbling in the
intervals between rare conformational rearrangements.
Multiple quantum coherences (MQCs) will not only
be sensitive to the fluctuations of the chemical shifts
of the nuclei involved in the coherences, but also
to cross-correlation between the modulations of their
chemical shifts (CSM/CSM). Since these interferences
affect zero quantum coherences (ZQCs) and double
quantum coherences (DQCs) in a different manner, the
difference between their relaxation rates allows one to
determine the cross-correlation rates (Pellecchia et al.,
1999; Kloiber and Konrat, 2000; Pervushin, 2001).
Initial reports on CSM/CSM effects have shown that
they can be observed for donor and acceptor nitrogen-
15 nuclei in nucleic acids (Chiarparin et al., 2001) and

Figure 1. (a) Three-spin single-quantum coherence SQC
(C′±N∓HN± ) and triple-quantum coherence TQC (C′±N±HN± )
in neighbouring amino acids in proteins. (b) CSA/CSA
cross-correlation due to concerted modulations of the anisotropic
chemical shifts (represented by ellipses), (c) CSM/CSM
cross-correlation due to concerted fluctuations of the isotropic
parts of the chemical shifts (dotted circles), (d) Dipole/dipole
interference involving an external spin (in this case Cα

i
). Such

mechanisms contribute to auto-relaxation of the three-spin SQC and
TQC, induce differential line broadening, and cannot be averaged
out using non-selective π-pulses.

for Cα and Cβ nuclei in side-chains of proteins (Frueh
et al., 2001; Vugmeyster et al., 2003).

Unfortunately, fluctuations of isotropic (CSM) and
anisotropic (CSA) components of the chemical shifts
affect ZQC’s and DQC’s in the same way. The meas-
ured rate is therefore a sum of two contributions as
sketched in Figures 1b and 1c. We propose to use the
notation:

RCS/CS = RCSA/CSA + RCSM/CSM, (1)

where the former term is sensitive to overall tum-
bling and fast internal motions, while the latter is only
significant in the presence of internal motions that
are slower than the correlation time τc. The experi-
ments described in this paper allow one to measure the
R

CS/CS
C′/N cross-correlation rate of MQC’s as a function

of the rate νCPMG = 1/(2τCPMG). The RCSM/CSM

contributions due to the isotropic components de-
crease with increasing pulse repetition rate, while the
RCSA/CSA contributions are not affected. This enables
unambiguous identification of residues experiencing
slow conformational exchange.

Materials and methods

Uniformly 13C/15N/2D-enriched ubiquitin was ob-
tained commercially (VLI). The protein was dissolved
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in 10% D2O/90% H2O with phosphate buffer at
pH 6.7 to a concentration of 1.5 mM. NMR data were
acquired at 300 K on a 600 MHz Bruker DMX spec-
trometer equipped with a quadruple resonance TBI
probe and three orthogonal gradient coils. For each
2D spectrum 64 × 512 complex points were recor-
ded using the pulse sequence shown in Figure 2. The
spectral widths were 1520 and 8389 Hz in the ω1 and
ω2 dimensions. For each t1 increment 32 scans were
accumulated with a relaxation delay of 3 s, optim-
ized to take account of the slow longitudinal relaxation
of amide protons in an otherwise deuterated protein.
The total acquisition time for each 2D experiment was
1.7 h. Processing of the data was performed using the
GNU Package NmrPipe/NmrDraw/NlinLS (Delaglio
et al., 1995). Each dimension was apodized by a 90◦
phase-shifted squared sine-bell window function and
zero-filled once. Relaxation rates were obtained by
least-squares fitting of the decay curves to exponential
functions. Dispersion curves of relaxation rates as a
function of νCPMG = 1/(2τCPMG) were fitted with a
Matlab script (Matlab, 1992). Errors were estimated
by a Monte-Carlo analysis using 300 synthetic data
sets.

The pulse sequence shown in Figure 2 is designed
to measure the decays of single- and triple-quantum
coherences SQC (C′±N∓HN± ) and TQC (C′±N±HN± )
(see Figure 1a). The preparation period allows one
to transfer the amide proton magnetization HN

z into
doubly antiphase single quantum coherence SQC
(4C′

zNxHN
z ) at point (a). A z-filter is applied to

the three-spin order term 4C′
zNzHN

z at (b) and three
simultaneous rectangular π/2-pulses create either
4C′

yNxHN
y or 4C′

xNyHN
y at (c), i.e., combinations of

single- and triple-quantum coherences. We are how-
ever only interested in mechanisms that involve C′ and
N nuclei. We shall speak of pseudo ZQC (C′+N−HN± ±
C′−N+HN∓ ) and pseudo DQC (C′+N+HN± ± C′−N−HN∓ )
operators. In order to separate these two terms, only
nitrogen and carbon excitation pulses need to be phase
cycled, since the proton coherence order is irrelevant
in the present study as may be appreciated from the
toggling frame diagrams in Figure 3.

Applying long pulse trains simultaneously to the
carbon and nitrogen nuclei can lead to heating of
the probe. Therefore, low-power RF pulses are used
during the mixing time τm (in square brackets in Fig-
ure 2) to refocus the chemical shifts and J-couplings
that affect the three-spin coherence, and to separ-
ate the desired CS/CS cross-correlation rate RC ′N

from other undesirable cross-correlated rates RDD/DD,
RCS/DD and RCS/CS involving C′

i−Cα
i , Ni+1−HN

i+1,
Ni+1−Cα

i+1, Cα
i −HN

i+1 dipole-dipole interactions on
the one hand and C′

i, Ni+1 and HN
i+1 CSA tensors on

the other. This is achieved by simultaneously refocus-
ing the carbon and nitrogen nuclei and by inverting the
protons in the center of each 1

2τCPMG delay, as shown
in Figure 3 using a description in terms of toggling
frames (Chiarparin et al., 1999). Only cross-correlated
CS/CS interference involving C′ and N nuclei contrib-
utes to differential line broadening between the two
selected sets of operators.

After the relaxation interval τm in Figure 2, a z-
filter is again applied to the three-spin order 4C′

zNzHN
z

to suppress phase distortions resulting from changes
in RF field amplitudes and to eliminate any spuri-
ous coherences (Sørensen et al., 1984). During the
subsequent evolution period t1 the magnetization is
labelled by the 15N chemical shifts in a semi-constant
time fashion (Logan et al., 1993) and transferred back
to the amide protons using the sensitivity enhance-
ment technique (Palmer et al., 1991; Kay et al., 1992).
Solvent suppression is achieved using a selective flip-
back pulse (Grzesiek and Bax, 1992) combined with
gradient selection.

Results and discussion

Differential line-broadening, i.e., the difference
between the decay rates of pseudo ZQC (C′+N−HN±
± C′−N+HN∓ ) and pseudo DQC (C′+N+HN± ±
C′−N−HN∓ ) operators, arises from a combination of
auto-correlated (AC) and cross-correlated (CC) in-
terference effects. The π-pulses applied during the
mixing time τm allow one to cancel the effects of
most undesired relaxation mechanisms (see Figure 3).
Some mechanisms can unfortunately not be rejected in
this manner and their rates have to be estimated. For
a three-spin coherence, three auto-correlated dipole-
dipole mechanisms between spins that are actively
involved, C′

i−Ni+1/C′
i−Ni+1, C′

i−HN
i+1/C′

i−HN
i+1 and

Ni+1−HN
i+1/Ni+1−HN

i+1 contribute to differential line
broadening. None of the dipolar contributions are pro-
portional to J(0) for pseudo ZQC and DQC terms.
For ubiquitin in the rigid limit (S2 = 1) at room
temperature (τc = 4 ns) and 14 T (ωH/2π =
600 MHz), their contributions, estimated to be 1.1 ·
10−3, 1.8 · 10−3 and 3.5 · 10−2 s−1, can be neg-
lected. Moreover, by including the amide proton
into the three-spin coherence (Pelluchia et al., 1999),
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Figure 2. Pulse sequence designed to measure the auto-relaxation of three-spin pseudo ZQC (C′+N−HN± ± C′−N+HN∓ ) and pseudo DQC

(C′+N+HN± ± C′−N−HN∓ ) operators. Black and white rectangles represent π/2 and π pulses. All pulses are applied along the x axes, unless

specified otherwise. The 1H, 15N, 13C carriers are centered at 4.7, 118 and 175 ppm, respectively. 90◦ and 180◦ pulses are applied to 13C with
field strengths of �/

√
15 and �/

√
3, � being defined as the difference in Hz between the centers of the C′ and Cα regions (� = 17.6 kHz at

600 MHz). Pulses applied to Cα are phase modulated. During the mixing time τm, the evolution of the three-spin coherence is refocused by two
simultaneous rectangular pulses of identical duration (4.5 kHz, 110 µs) applied to 13C and 15N in the middle of τCPMG and by two (14 kHz,
35 µs) rectangular proton pulses applied at 1/4τCPMG and 3/4τCPMG. The delays are set to τ1 = 2.7 ms (≈ 1/4J(NH)), τ2 = 15.1 ms
(≈ 1/4J(C′N)), and δ = 1.3 ms. The 15N magnetization evolves during a semi-constant time period comprised of two intervals RT (real
time) and CT (constant time). Quadrature detection is achieved in ω1 by the enhanced-sensitivity pulsed field gradient method. WALTZ-16
sequences are used to perform proton and nitrogen decoupling with RF field strengths of 3.5 kHz and 1.2 kHz, respectively. The phase cycle
(16 steps) is φ1 = 8(x,−x), φ2 = 4(y), 4(−x), 4(−y), 4(x), φ3 = 4(x), 4(y), 4(−x), 4(−y), φ4 = 4(x, x,−x,−x), φ5 = 4(y, y,−y,−y).
For the selection of pseudo DQC or pseudo ZQC, φrec = 4(x,−x,−x, x) or φrec = 2(x, −x,−x, x,−x, x, x,−x), respectively. The identity
of these terms has been verified by inserting (optional) gradient pulses at points (d) and (e) with suitable amplitude ratios. This allows one to
verify that the dephasing and refocusing correspond to coherences involving nuclei with gyromagnetic ratios of opposite signs. The duration
of all sine-shaped gradients is 1 ms and their peak amplitudes are g1x = 31 G/cm, g2y = 20 G/cm, g3z = 19.5 G/cm, g4x = 45 G/cm,
g5z = 30 G/cm, g6z = 39.5 G/cm, g7z = −4 G/cm.

one can avoid cross-correlation effects due to dipole-
dipole interactions C′

i−HN
i+1/Ni+1−HN

i+1, expected to
be up to 0.8 s−1 in our case. In deuterated pro-
teins, other dipolar interactions are negligible. Fi-
nally, the DD/DD interferences C′

i−Cα
i /Ni+1−Cα

i or
C′

i−Cα
i+1/Ni+1−Cα

i+1 involving an external Cα nuc-
leus and the C′

i and Ni+1 nuclei participating in the
MQC (see Figure 1) can safely be neglected: in our
case, the resulting contributions are estimated to be
≤ 0.025 s−1. As a result, only two cross-correlated
mechanisms, CSA/CSA and CSM/CSM (Figures 1b
and 1c), contribute significantly (and with opposite
signs) to the auto-relaxation rates. Their difference
�R(AR)=R(AR)(pseudo-DQC)−R(AR) (pseudo-ZQC)
is:

�R(AR)=2R
CS/CS
C′N =2(R

CSA/CSA
C′N +R

CSM/CSM
C′N ). (2)

Slow motions and chemical shift modulations.
Chemical shift modulations, which cause the Hamilto-
nian to be time-dependent, are equivalent to chemical
exchange and can therefore be treated using well-
known exchange theory. The Hamiltonian of the sys-
tem can be described by a time-independent part H0
and a stochastic perturbation H1 due to the chemical
shift modulation (Deverell et al., 1970; Wennerström,
1972):

H(t) = H0 + H CSM
1 (t), (3)

where H CSM
1 (t) is defined by:

H CSM
1 (t) =

∑
i

δωi (t)Izi , (4)

where the factors δωi (t) represent the time-dependent
deviations from the average chemical shifts ωi , so that
< δωi (t) >= 0, and the summation must be carried



267

Figure 3. Toggling frame diagrams showing how different cross
correlation rates can be selected or eliminated by suitable posi-
tioning of π pulses. We focus attention on the three mechanisms

R
CS/CS
C′/N , R

CS/CS
C′/H and R

CS/CS
N/H . The first of these remains invariant,

whereas the latter two change sign and are therefore averaged out.
Similar averaging leads to the elimination of various dipolar terms
involving Cα . The timing of the pulses can easily be modified to
select the second or third rate.

out over all nuclei Ii that are involved in the multiple-
quantum coherence. Assuming instantaneous jumps,
the isotropic contributions R

CSM/CSM
2 to the transverse

auto-relaxation rate of a coherence represented by a
product operator BS may be expressed as:

R
CSM/CSM
2 (BS) =

∑
m,n

R
CSM/CSM
m,n

= 1

2

∑
m,n

J
CSM/CSM
m,n (0)

〈Bs |[Izm, [Izn, Bs ]]〉
〈Bs |Bs〉 ,

(5)

where the indices m and n run over all nuclei involved
in the multiple-quantum coherence BS . The spec-
tral density J

CSM/CSM
m,n (0) provides a measure of the

correlation between the fluctuations of the isotropic
chemical shifts associated with these nuclei:

J
CSM/CSM
m,n (0) =

∫ +∞

−∞
δωm(t)δωn(t + τ)dτ (6)

An interesting feature of Equation 6 is that if m 
= n

the spectral density can take negative values when the
chemical shift modulations are anti-correlated (Frueh,
2002). Longitudinal magnetization does not relax un-
der CSM since all operators Izn commute with Zee-
man order Izs and with longitudinal two-spin order
terms such as 2Izr Izs . The prediction of the aver-
age in Equation 6 requires a model of the motions.
Usually, one considers fluctuations between two con-
formations A and B assuming instantaneous jumps.
If we further assume that the two nuclei are affected
simultaneously by the same exchange event one can
evaluate Equation 5 as a function of the exchange life-

time kex by adapting the equation for single-quantum
line broadening (Wennerström, 1972):

R
CSM/CSM
m,n = 2pApB�ωAB

m �ωAB
n

1

kex
, (7)

where kex is the sum of the forward and backward
exchange rates k+ and k−, pA and pB represent
the populations of sites A and B, and �ωAB

m and
�ωAB

n are the differences in chemical shifts of spins
m and n between sites A and B (�ωAB

m = ωA
m −

ωB
m,�ωAB

n = ωA
n − ωB

n ). The factor two in Equa-
tion 7 arises from the fact that both [Izm, [Izn, Bs ]]
and [Izn, [Izm,Bs ]] contribute to the cross-correlated
relaxation rates R

CSM/CSM
m,n (BS) in Equation 5 (Kloiber

and Konrat, 2000).

Decay rates measured with a single refocusing pulse.
Figure 4 shows the difference between the decay rates
of three-spin pseudo ZQC (C′+N−HN± ± C′−N+HN∓ )
and pseudo DQC (C′+N+HN± ± C′−N−HN∓ ) operators,
for all observable residues, measured with one hard re-
focusing π-pulse applied to carbon-13 (10 kHz, 49 µs)
and one to nitrogen-15 (12.5 kHz, 39 µs) during the
mixing time (n = 1 in Figure 2). Out of 64 observ-
able residues in ubiquitin, 8 were excluded from the
analysis because of overlapping signals: E16, V26,
Q31, D39, R42, S57, L71 and R72. Residue T12
was excluded from the final analysis since its poor
signal-to-noise ratio led to large errors. The meas-
ured CS/CS cross-correlation rates shown in Figure 4
are generally between −2.5 and +2 s−1 which agrees
with predictions of the CSA/CSA contributions (open
squares and diamonds), calculated using the X-ray
structure (Vijay-Kumar et al., 1987) and assuming
the structure to be rigid, i.e., S2 = 1. Open dia-
monds were estimated using 13C and 15N CSA tensors
(Bax and Cornilescu, 2000) averaged over all residues,
while open squares were evaluated using different
tensors depending on the environment (α-helices or
β-sheets) in the protein. For most residues, the pre-
dicted CSA/CSA contributions can account for the
experimental rates, but the behaviour of asparagine
N25 can only be understood if one postulates a signifi-
cant correlated CSM/CSM modulation of the isotropic
chemical shifts in order to account for the negative
experimental rate RCS/CS = −6.8 s−1. The predicted
rate RCSA/CSA is between −2.5 s−1 and −1.5 s−1 for
this residue depending on the CSA tensors used in the
calculations.
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Figure 4. Cross-correlated relaxation rates R
CS/CS
C′N vs. residue number in ubiquitin. Dots with error bars represent experimental values

measured with a single refocusing pulse during the mixing time (see text). Open diamonds and squares correspond to predicted values of

R
CSA/CSA
C′N . Bond angles were calculated from the X-ray structure of ubiquitin. The order parameter S2 was assumed to be 1 (rigid limit).

Diamonds indicate rates that were calculated assuming average anisotropic 13C and 15N CSA tensors for all residues with an angle βC = 38◦
between the unique axis of the 13C CSA tensor and the C′N bond vector and an angle βN = 19◦ between the unique axis of the 15N CSA
tensor and NH bond vector. Open squares were calculated assuming different 13C and 15N CSA tensors and angles for β-strands (βC = 37◦
and βN = 19◦) and α-helices (βC = 42◦ and βN = 16◦).

Decay rates measured with multiple refocusing.
To separate the CSM/CSM contributions from the
CSA/CSA rates, relaxation dispersion curves were
obtained by repeating the experiment with n =
2, 4, 6, . . . , N for pulse intervals τCPMG = 0.8, 2.4,
4, 6, 6.8, 8, 10, 12 and 14 ms. Fitting the experi-
mental decays, which are nearly mono-exponential for
each τCPMG interval, allows one to extract the auto-
relaxation rates RAR(pseudo-ZQC) and RAR(pseudo-
DQC), and hence to evaluate the cross-correlation
rates R

CSM/CSM
m,n for each residue and for each τCPMG

interval. Figure 5 shows such curves for the aspar-
agine N25 residue. Clearly an attenuation of the rates
is observed: The relaxation rate drops from ca. −6 s−1

(slow pulse repetition rate) to about −1 s−1 (fast pulse
repetition rate). This is in agreement with other stud-
ies showing that N25 is subject to conformational
exchange (Lienin et al., 1998; Mills and Szyperski,
2002).

In the limit of fast exchange �ωAB
m,nτex � 1, the

dependence of the measured relaxation rates on the

frequency νCPMG = 1/(2τCPMG) can be obtained by
extending the general equation (Luz and Meiboom,
1963) if T2A =T2B =T2:

R
CSM/CSM
m,n = 2pApB�ωAB

m �ωAB
n

1

kex[
1 − 2 tanh(kexτCPMG/2)

kexτCPMG

]
.

(8)

The term in the square brackets can vary from 0 (for
kex � 1/(2τCPMG)) to 1 (for kex � 1/(2τCPMG)). In
the limit of very slow pulse repetition rates, both iso-
tropic and anisotropic contributions participate to dif-
ferential line-broadening, while for very fast pulse re-
petition rates only the CSA/CSA interferences remain.
Moreover, fitting the relaxation dispersion curves to
Equation 8 allows one to extract the two parameters
kex and pApB�ωAB

m �ωAB
n /4π2.

For very slow motions and very unequal popu-
lations, it may be necessary to use more general
equations (Allerhand and Gutowsky, 1965; Carver
and Richards, 1972; Davis et al., 1999; Ishima and
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Figure 5. Relaxation dispersion curves for asparagine N25 in ubiquitin, showing the apparent rate R
CS/CS
C′N as a function of the

Carr–Purcell–Meiboom–Gill rate νCPMG = 1/(2τCPMG). Dots with error bars represent experimental data. On the left: the upper solid curve
represents the simulated dispersion curve without chemical shift modulation (pApB�ωAB

m �ωAB
n /4π2 = 0) and the lower solid curve with

chemical shift modulation (kex = 1064 s−1 and pApB�ωAB
m �ωAB

n /4π2 = 130.8 s−2) affecting simultaneously the carbon and nitrogen

nuclei (as explained in the text). The dashed line represents the constant R
CSA/CSA
C′/N cross-correlation rate used in the simulations. On the right:

Experimental rates obtained for asparagine N25 when the carrier frequencies are set on-resonance for each nucleus involved in the coherence
during the Carr–Purcell sequence. In this case, no oscillations are observed. The solid curve represents the fit using Equation 8.

Torchia, 1999) and investigate the dependence of the
relaxation rates on the static field (Millet et al., 2000).

Oscillations due to offset effects. The left-hand side
of Figure 5 shows the experimental decay rates (dots
with error bars) plotted as a function of the pulse
repetition rate. The oscillations can be attributed
to offset effects (tilted effective fields) during the
Carr–Purcell–Meiboom–Gill sequence. Because the
refocusing pulse trains are applied to all three nuc-
lei involved in the coherence, three offsets must be
considered that can interfere together. The accurate
analysis of relaxation during an imperfect CPMG se-
quence requires numerical simulations. Such simula-
tions were performed using Matlab, by propagating
the full Liouvillian starting with an initial two-spin
coherence 2C′

yNx (neglecting the proton to reduce
the dimensions of the Liouville space to 16 × 16)
during several cycles n = 2, 4, 6, . . . of the Carr–
Purcell sequence, each cycle consisting of [τCPMG/2−
π − τCPMG/2]. The operator basis of a two-spin sys-
tem consists of 15 operator products in addition to
the unity operator. The corresponding Liouville equa-
tions can therefore be written using a 15 × 15 matrix
and a 15-dimensional vector describing the density
operator elements. A 30 × 30 matrix is required to
write the McConnell equations for two sites A and
B (2 × 15 operators) (Helgestrand et al., 2000). As-
suming dynamic equilibrium, this leads to a 31 × 31
matrix where the first column corresponds to the equi-

librium magnetization. The homogeneous McConnell
equation is:

d

dt
σ(t) = −Pσ(t), (9)

where the superoperator P is represented by a 31 ×
31 matrix and σ by a 31-dimensional vector. Since P

does not depend on time during the interval �t , the
solutions of this differential equation are:

σ(t + �t) = exp [−P�t] σ(t). (10)

After n cycles (t = nτCPMG) the expectation values
〈2CyNx(A)〉 and 〈2CxNy(A)〉 for site A are given by
the scalar products:

〈2CyNx(A)〉 = 〈σ(nτCPMG)|2CyNx(A)〉
〈2CxNy(A)〉 = 〈σ(nτCPMG)|2CxNy(A)〉 (11)

and likewise for site B. The expectation values of ZQC
(C±N∓(A)) and DQC (C±N±(A)) were evaluated
by combining the cartesian expectation values in an
adequate manner. The resulting mono-exponential de-
cays were fitted to extract the CS/CS cross-correlation
rates, which were plotted as a function of the rate
νCPMG = 1/(2τCPMG).

The carbon and nitrogen offsets observed for N25
in a three-dimensional HNCO experiment (ωC ′/2π =
251.2 Hz and ωN/2π = 171.8 Hz) were used in
the simulations of the off-resonance decays. Other
parameters used in the simulations were similar to
those of the experiment described in Figure 2. On the
left-hand side of Figure 5, the dashed line represents
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Figure 6. Simulated dispersion curves as function of the offset of the amide nitrogen. The pulses are of same duration for both nuclei (5 kHz,
100 µs), and the 13C offset is set to zero. Significant distorsions can already be observed at an offset of 360 Hz (6 ppm) that corresponds to a
quarter of the spectral width commonly observed for amide nitrogens at 14 T.

the constant anisotropic contribution R
CSA/CSA

C ′/N to the
cross-correlation rate, i.e., the rate that remains if the
CSM/CSM contributions are negligible or have been
eliminated by rapid refocusing (kex � 1/(2τCPMG)).
The two solid lines on the left-hand side represent sim-
ulated relaxation dispersion curves calculated with the
parameters given in the legend.

Since the simulations were for a two spin-system,
the simulated profiles on the left-hand side of Figure 5
should not be considered as fits of our experimental
data, but merely as a demonstration of possible effects
induced by offsets when a Carr–Purcell sequence is
applied to a multiple quantum coherence. In the ex-
periments, the proton offsets will also contribute to
the modulation of the relaxation dispersion curve. Yet
for the sake of simplicity, the simulations were not
extended to triple quantum coherence. The simula-
tions clearly underscore the fact that the attenuation
of the cross-correlation rate R

CS/CS
C′/N as a function of

νCPMG = 1/(2τCPMG) is really due to the presence of
conformational exchange rather than to artifacts.

Decay rates measured with multiple refocusing us-
ing on-resonance pulses. For a selected amino acid,
it is possible to repeat the experiments with all
three carrier frequencies (i.e., those of the carbon-
13, nitrogen-15 and proton channels) positioned on-
resonance during the Carr–Purcell–Meiboom–Gill se-
quence. We shall focus attention on the asparagine

N25 residue that appears to have an unusual dy-
namic behaviour (see Figure 4). For this residue, no
oscillations were observed in the on-resonance re-
laxation dispersion curves. The right-hand side of
Figure 5 shows the experimental data points. Fitting
the dispersion curve to Equation 8 assuming fast ex-
change allows us to extract the parameters kex =
1064 s−1 and pApB�ωAB

m �ωAB
n /4π2 = 130.8 s−2.

Conformational exchange in macromolecules some-
times violates the fast exchange approximation, i.e.,
�ωAB

m,nτex may not be small, and the fact that only
one line is observed for a two-site exchange system
does not necessarily allow one to assume that the
conditions for fast exchange are fulfilled. Indeed, if
pA � pB only a single line may be observed since
the other one may be very weak. However, our ana-
lysis suffices to identify residues that are subject to
conformational exchange. The presence of signifi-
cant isotropic (CSM/CSM) contributions, sugges-
ted by the large discrepancy between the predicted
CSA/CSA contributions and the measured CS/CS
rates, is clearly confirmed by the drastic attenuation
of the relaxation rates with increasing pulse repetition
rates. Repeating this experiments at different static
fields B0 should permit a better characterization of the
motions (Millet et al., 2000).

If the offsets are not vanishingly small compared
to the RF amplitudes, oscillations appear that are due
to tilted effective fields, as illustrated in Figure 6,
which make it difficult to extract reliable decay rates.
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Figure 7. Ribbon representation of an X-ray structure of ubiquitin
(1ubq.pdb). The highly mobile arginine N25 residue and its neigh-
bours glutamic acid E24 and isoleucine I23 are shown. The figure
was made with MOLMOL.

Thus two-dimensional NMR cannot be used in an
effective manner with multiple refocusing (n > 1).
Further research is under way to evaluate the per-
formance of triple-resonance CPMG sequences that
use frequency-swept adiabatic ‘chirp’ pulses for both
carbon-13 and nitrogen-15 nuclei. Chirp pulses can
be made weak enough to avoid heating effects, yet
allow one to refocus three-spin SQC and TQC over
wide ranges of offsets. If broad-band methods fail, it
would be preferable to use selective methods to invest-
igate one residue after another. One possible method
would use a transfer by selective cross-polarization
(Ferrage et al., 2000, 2003) from protons to nitrogen-
15 prior to the excitation of longitudinal three-spin
order 4C′

zNzHN
z . After SQC or TQC relaxation and

evolution of SQC under the nitrogen-15 chemical
shifts, a second transfer by selective cross-polarization
would generate observable proton magnetization. If
the dynamic properties of only a few residues need
to be characterized, this would allow one to reduce
considerably the experimental time.

Conclusions

We have presented a new approach to identify un-
ambiguously the presence or absence of slow mo-
tions in the backbone of a biomolecule. Motions
that are slower than the global correlation time τc

can lead to correlated modulations of the isotropic
components of the chemical shifts. The relaxation
rates of three-spin single- and triple-quantum coher-
ences therefore depend on the pulse repetition rate of

Carr–Purcell–Meiboom–Gill multiple refocusing se-
quences, an effect known as relaxation dispersion.
If fast pulse repetition rates lead to longer decays,
i.e., to a decrease of the apparent relaxation rates,
this can be attributed to the presence of slow con-
formational exchange. This effect can be caused by
correlated or anticorrelated fluctuations of the iso-
tropic chemical shifts. In ubiquitin it was possible to
confirm the presence of pronounced local mobility of
the asparagine N25 residue, which is in agreement
with previous work (Lienin et al., 1998; Mills and
Szyperski, 2002). The simple observation that the res-
onance of the neighbouring glutamic acid residue E24
is strongly attenuated in the HSQC spectrum, and the
fact that the next residue towards the beginning of the
first α-helix, isoleucine I23, has an abnormally fast
N/HN cross-correlated CSM/CSM relaxation rate (as
observed when the experiment is modified to focus
attention on the correlation of the slow modulations
of the isotropic chemical shifts of the N and HN nuc-
lei, see Figure 3) tend to indicate the presence of local
motions in this exposed part of the protein.

Preliminary research in our laboratory indicates
that the TQC experiment can reveal changes in in-
ternal mobility of proteins upon complex formation.
Specifically, we have compared CSM/CSM relaxa-
tion rates in Major Urinary Protein (MUP) that is
either bound to a pyrazine derivative (a model for a
pheromone) or in its free ‘apo’ form. Earlier studies
of the apo and bound forms of this carrier protein
(Zidek et al., 1999) that use a conventional model-free
analysis (Lipari and Szabo, 1982) of single-quantum
nitrogen-15 relaxation show only very subtle changes.
By contrast, the TQC experiment described in this
paper allowed us to identify significant changes in in-
ternal mobility between apo and bound forms of the
protein. Thus the method provides a useful tool for
characterizing slow dynamics in macromolecules.
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